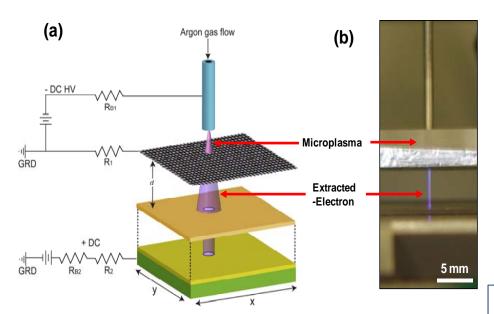
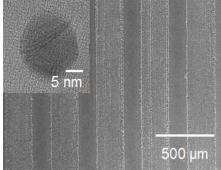


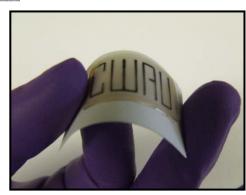
A Versatile Microplasma-based Patterning Technology for Large-Scale, High Throughput Nanomanufacturing


<u>Christian A. Zorman</u>¹, Philip X.-L. Feng¹, R. Mohan Sankaran², and Joao Maia³
¹Electrical Engineering, ²Chemical Engineering, ³Macromolecular Science and Engineering,


Case Western Reserve University

Goal: To develop a direct-write alternative to 2D printing and conventional subtractive photolithography/electron beam lithography for polymer micro and nanosystems.

Initial results with micron-scale printing


Atmospheric-pressure microplasma direct printing system integrated with micro/nanoscale mask and electrode lens

SEM of an array of lines fabricated by exposing a AgNO₃/PVA film to the scanning microplasma. Inset: TEM image of a Agnanoparticle that makes up the lines.

Photo of microplasma fabricated metal structure on LCP substrate

Funded by NSF SNM Program: Award # 1246715